Core Mathematics C1 Paper B

1. Find the set of values of the constant k such that the equation

$$
\begin{equation*}
x^{2}-6 x+k=0 \tag{3}
\end{equation*}
$$

has real and distinct roots.
2. The points A, B and C have coordinates $(-3,0),(5,-2)$ and $(4,1)$ respectively.

Find an equation for the straight line which passes through C and is parallel to $A B$. Give your answer in the form $a x+b y=c$, where a, b and c are integers.
3. (i) Express $\frac{18}{\sqrt{3}}$ in the form $k \sqrt{3}$.
(ii) Express $(1-\sqrt{3})(4-2 \sqrt{3})$ in the form $a+b \sqrt{3}$ where a and b are integers.
4. Solve the inequality

$$
\begin{equation*}
2 x^{2}-9 x+4<0 . \tag{4}
\end{equation*}
$$

5. Given that

$$
\left(x^{2}+2 x-3\right)\left(2 x^{2}+k x+7\right) \equiv 2 x^{4}+A x^{3}+A x^{2}+B x-21
$$

find the values of the constants k, A and B.
6.

The diagram shows the graph of $y=\mathrm{f}(x)$.
(a) Write down the number of solutions that exist for the equation
(i) $\mathrm{f}(x)=1$,
(ii) $\mathrm{f}(x)=-x$.
(b) Labelling the axes in a similar way, sketch on separate diagrams the graphs of
(i) $y=\mathrm{f}(x-2)$,
(ii) $y=\mathrm{f}(2 x)$.
7.

$$
\mathrm{f}(x)=x^{3}-9 x^{2}
$$

(i) Find $\mathrm{f}^{\prime}(x)$.
(ii) Find $\mathrm{f}^{\prime \prime}(x)$.
(iii) Find the coordinates of the stationary points of the curve $y=\mathrm{f}(x)$.
(iv) Determine whether each stationary point is a maximum or a minimum point.
8. $\mathrm{f}(x)=9+6 x-x^{2}$.
(i) Find the values of A and B such that

$$
\begin{equation*}
\mathrm{f}(x)=A-(x+B)^{2} \tag{4}
\end{equation*}
$$

(ii) State the maximum value of $\mathrm{f}(x)$.
(iii) Solve the equation $\mathrm{f}(x)=0$, giving your answers in the form $a+b \sqrt{2}$ where a and b are integers.
(iv) Sketch the curve $y=\mathrm{f}(x)$.
9. The circle C has centre $(-3,2)$ and passes through the point $(2,1)$.
(i) Find an equation for C.
(ii) Show that the point with coordinates $(-4,7)$ lies on C.
(iii) Find an equation for the tangent to C at the point $(-4,7)$. Give your answer in the form $a x+b y+c=0$, where a, b and c are integers.
10. A curve has the equation $y=(\sqrt{x}-3)^{2}, x \geq 0$.
(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=1-\frac{3}{\sqrt{x}}$.

The point P on the curve has x-coordinate 4 .
(ii) Find an equation for the normal to the curve at P in the form $y=m x+c$.
(iii) Show that the normal to the curve at P does not intersect the curve again.

